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Potential Mars Sample Return –

Notional Architecture
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Supersonic Deceleration for Mars

• MSL used a supersonic 

parachute to land ~1 t on Mars

– 21.35 m diameter

– Leveraged Viking and 

heritage test data
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Future >1 t payloads to higher 

landing elevations will require larger 

supersonic chutes and new flight 

testing/validation program

or

Incorporate other technologies to 

enable heavier payloads to Mars
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Supersonic Retro-Propulsion

• SRP is the use of engine(s) firing in the velocity vector 

direction during the supersonic phase of entry

– Provides an alternative to supersonic parachutes to 

decelerate the entry vehicle
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Conceptual SRP Entry and Descent Concept
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Aeroshell Diameter 4.7 m

Mars LS 150 deg

Ballistic Coefficient 150, 300, 450 kg/m2

SRP Thrust/Weight 3, 5 Mars-g’s

Entry Velocity 4.5, 5.5, 6.5, 7.5 km/s

Landing Site Elevation -0.5, -1.5, -2.5, -3.5 km

Study Assumptions:
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Conceptual SRP MSR Lander – Aeroshell

• Spherical Heatshield

– 4.7 m diameter
• Max that can fit 5 m diameter 

launch fairing

– Spherical provides potential 
heating/packaging benefits vs. 
sphere-cone

• Backshell

– Steeper angles to increase 
packaging volume
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Capsules,” AIAA Paper 2012-4297, 2012.
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Conceptual SRP MSR Lander – Propulsion

• NTO/MMH bi-propellant

– Thrust: 8000 N (BC300 cases) or 12,000 N (BC450 
cases)

– 12 engines total (T/W=3 cases) or 20 engines 
(T/W=5 cases)

– Area ratio 24:1

• Driven by aeroshell accommodation constraints

• Reduces Isp of engines

• Electrically driven pumps provide:

– Increased chamber pressure

– Increased Isp

– Decreases in thruster dimensions (volume)

– Minimum thruster and prop tank mass

– Throttleability (estimated to ~65% thrust)

• Drawback has been battery capacity

– Battery capacity (Li-ion) is now competitive

– Current assumption 150 W-hr/kg, projected 300-400 
W-hr/kg
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MSL Mars Landing Engine 

example (mono-propellant, 

3300 N thrust)

Note SRP requires 3-4x 

thrust levels vs. MSL
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Conceptual SRP MSR 

Lander –

Configuration
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Conceptual SRP MSR Lander –

Trajectory Modeling

• Objective

– Minimize Propellant Mass Fraction (PMF)

• PMF = (propellant mass) / (wet mass at ignition)

• Key Inputs

– Entry velocity, entry flight path angle (FPA), 

bank profile, SRP ignition time, thrust profile

• End State

– 0.75 m/s descent rate, -90 deg. FPA, 

propellant remaining for 20 s powered hover
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Conceptual SRP MSR Lander – Mass Sizing

• Moderate-fidelity sizing model 
tailored for SRP configurations

– Physics-based and 
historical sizing 
relationships (MSL, 
Phoenix, MER, Pathfinder)

– TPS sizing based on mass 
fraction correlation to heat 
load

• Outputs

– Useful Landed Mass

– Subsystem and component 
mass breakdowns

10

Lobbia, M., “Sizing Methods for Advanced Mars Entry Descent and Landing Systems,” 

13th International Planetary Probe Workshop, 2016.
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Results – Conceptual SRP

Trajectories

• Larger ballistic coefficient SRP 
trajectories more shallow and 
further downrange

• SRP leads to much lower/faster 
ignition points vs. supersonic 
chute deploy

• Application of 4-g constraint 
demonstrates SRP for human 
precursor missions
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Results – Propellant Mass Fraction Sensitivities

• 4-g deceleration constraint 
leads to slight increase in PMF

• PMF relatively insensitive to 
landing site elevation and entry 
velocity

• Higher T/W cases have lower 
PMF and ignite at lower 
altitudes/velocities
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Results – Mass Sizing

• Useful landed mass sensitivity

– Small change with respect to T/W and landing site 
elevation

– Decreases with higher entry velocities
• Due to TPS sizing based on heat load

• 4-g deceleration constraint also reduces useful landed 
mass due to higher heat loads and TPS mass

13
Pre-Decisional Information -- For Planning and Discussion Purposes Only



j p l . n a s a . g o v

Conclusions and Future Work

• High ballistic coefficient SRP is an enabling 
technology for increasing useful landed mass to 
Mars surface

– Eliminates need for large supersonic chutes

– Reduces sensitivity to some landing requirements 
(elevation, entry velocity)

14

Examples show potential 

for 300 and 450 kg/m2

ballistic coefficient SRP 

designs to land >2x MSL 

payload to Mars with only 

a 5% increase in 

heatshield diameter
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